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Abstract: In this paper, sparse FIR filter was designed using Double Generalized Orthogonal Matching Pursuit (DGOMP) to reduce 

memory usage and increasing the speed thereby decreasing computational complexity of the algorithm. Mathematical models were 

formulated and simulations were conducted to validate the performance of the proposed method. The performance was compared with 

BOMP and Conventional FIR filter. The results showed that the DGOMP method achieved higher sparsity and a better approximation 

of an ideal filter. Additionally, the designed sparse FIR filters using DGOMP showed better performance in terms of time of execution 

when the signal lengths keep increasing, giving a 10% faster execution time when compared to BOMP. The passband and stopband 

attenuation, as well as ripple values were better, offering the flexibility of parameter adjustment. The results showed that DGOMP is a 

promising approach for designing sparse FIR filters. 
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1. INTRODUCTION 
The attractive properties of a finite impulse response filter such as guaranteed stability, low coefficient sensitivity, and 

exact linear phase makes it suitable for a wide range of applications in digital signal processing systems [1]. It has been 

deployed in areas such as Radar, Digital communications, and Biomedical [2]. The design of finite impulse response (FIR) 

filters presents numerous challenges related to complexity in implementation, expensive hardware, high power 

consumption, filter order reduction, achieving lower passband and stopband ripple [4]. Notably, Finite Impulse Response 

Filters encounter greater challenges in power consumption and implementation cost compared to their Infinite Response 

Filters counterparts [5]. 

To address these problems in FIR filter design, several techniques and numerical algorithms have been developed with 

the objective of minimizing approximation errors [6]. Popular algorithms include; the least mean square (LMS), Recursive 

least square (RLS), Orthogonal matching pursuit (OMP), Singular Value Decomposition (SVD), Iterative Hard 

Thresholding (IHT), Subspace-Based Compressive Sensing (Sub-CS), Iterative Reweighted Least Square (IRLS), 

Forward-Backward Pursuit (FBP), Iterative Soft Thresholding (IST), Compressive Sampling Matching Pursuit (CoSaMP), 

and Convex Relaxation [6-24]. 

One approach to optimize FIR filters is by designing them as sparse filters, where a significant number of coefficients 

are set to zero. Utilizing sparse FIR filters offers the advantage of reducing the number of required multiplications, thereby 

lowering power consumption [7]. However, designing sparse FIR filters is more challenging as they need to meet the 

desired specifications, while also reducing implementation complexity by eliminating multipliers and adders corresponding 

to zero-valued coefficients [8]. The optimization of sparse FIR filters based on specific frequency domain constraints is 

highly non-convex and does not efficiently provide a global optimal solution within a polynomial time frame [9]. As a 

result, the l1- norm has been used as an effective alternative to the l0 norm in dealing with non-convexity [9-10]. In 

addition to the l1-norm minimization, heuristic methods have been proposed to search for sparse FIR filter solutions. 

Depth-first branch-and-bound algorithms have been introduced to localize zero-valued coefficients and explore all possible 

solutions [11][12], but the computational complexity remains a challenge, especially for high-order filter designs. Genetic 

algorithms have also been adopted to heuristically search for potential positions of zero-valued coefficients [13]. An 

overview of various optimization techniques, such as linear programming, mixed-integer programming, semidefinite 

programming, and greedy algorithms for designing sparse systems, has been provided in [14]. However, this paper lacks 

detailed exploration of the limitations, trade-offs, and performance comparisons of these techniques. Furthermore, it 

mainly focuses on optimization methods and overlooks alternative approaches like machine learning-based methods. 

Consequently, there is a need for more optimal algorithms to efficiently design sparse FIR filters. 
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The aim of this paper is therefore, to design an effective, faster and efficient sparse FIR filter with reduced 

computational complexity while recovering the original signal from noise using DGOMP algorithm. To achieve this aim, 

the research is divided into different headings and subheadings: It begins with introduction, followed by review of related 

literatures, methodology which shows the mathematical formulations, results obtained and their explanation and the 

concluding part. 

2. LITERATURE REVIEW 

The research of Chen et al., [24] introduced a method for designing sparse FIR filters with cascaded structures. The 

work aimed to reduce the computational complexity and memory requirements of FIR filters while maintaining a good 

frequency response. The objective was to reduce the computational complexity, power consumption and memory 

requirements of FIR filters while maintaining a good frequency response. The methodology used in this paper involves a 

two-stage process. Firstly, the sparse FIR filter is designed utilizing an iterative algorithm that is based on the method of 

projection onto convex sets (POCS). This technique imposes the sparsity constraint on the filter coefficients, effectively 

reducing the number of non-zero coefficients in the filter. 

In the second stage, the sparse FIR filter is transformed into a cascaded form by decomposing it into multiple sub-filters. 

The sub-filters are designed using the frequency-response masking (FRM) method, which utilizes masking filters to 

achieve the desired frequency response. The authors compared their proposed method with other existing techniques for 

designing sparse FIR filters and demonstrate that their approach achieves better performance regarding filter complexity 

and frequency response. However, the paper does not consider the impact of quantization on the filter performance. 

Quantizing the filter coefficients to a finite number of bits can introduce errors and affect its overall performance. Thus, 

further exploration is needed to investigate techniques that mitigate quantization errors and evaluate their impact on the 

proposed method. 

In another paper titled "Sparse Bayesian Learning for Compressed Sensing Signal Recovery using ℓ₁/₂-norm" by Bai 

[4], the focus is on signal recovery from compressively sensed data using sparse Bayesian learning. The proposed 

algorithm incorporates uncertainties and noise in the measurement process, which is often neglected in existing 

compressed sensing recovery algorithms. It estimates the noise level and signal sparsity level before employing a Bayesian 

framework to recover the signal. The author evaluated the proposed algorithm using synthetic and real-world datasets, 

demonstrating its superiority over existing compressed sensing recovery algorithms in terms of recovery accuracy and 

robustness to noise. However, there is room for improvement in terms of computational efficiency, and the assumption of a 

sparse prior on the signal might not always hold in practical scenarios. 

Another paper by Wang et al.,[14] introduces the orthogonal matching pursuit method for designing sparse constrained 

FIR filters [14]. Two types of filters are studied: sparse FIR notch filters with controlled null width and sparse low-pass 

filters with derivative constraints. Numerical examples validate the effectiveness of this design method, but it may be 

cumbersome for designing two-dimensional digital filters. Furthermore, a swarm intelligence-based Firefly optimization 

algorithm was proposed by Premaratne et al., [17] for the optimal design of sparse linear phase finite impulse response 

(FIR) filters. This algorithm aims to design filters that meet specific desired specifications with both fixed and variable 

sparsity. The objective function is formulated with three parameters: maximum passband ripple, maximum stopband ripple, 

and stopband attenuation. The effectiveness of this proposed method is evaluated through a two-stage process. In the first 

stage, the designed filters are compared with non-sparse filters in terms of deviation from the desired specifications. The 

comparative analysis demonstrates that the proposed sparse linear phase FIR filter design approach outperforms 

conventional methods while staying within the desired specification limits. However, it should be noted that the Firefly 

optimization algorithm may not be well-suited for designing sparse FIR filters due to its low convergence speed, frequent 

premature convergence, and difficulties in handling constraints. 

Additionally, a novel algorithm was proposed by Li et al., [19] for designing sparse linear-phase FIR filters. In this 

algorithm, certain non-zero coefficients at key positions are kept intact to avoid straying from optimal results. Only a 

portion of the coefficients participate in l1-optimization during each iteration. Simulations show that this algorithm 

outperforms the successive thinning algorithm and other traditional l1-optimization methods, but its efficiency is limited 

due to utilizing only a portion of the coefficients. 

In the pursuit of designing FIR digital lowpass sparse filters, a technique leveraging hard thresholding was employed to 

keep the zero-valued coefficients intact was developed by Yadav et al., [11]. The optimal filter coefficients were then 

obtained by minimizing the error objective function through the utilization of the Hybrid Grey Wolf Optimization with 

Cuckoo Search (HGWOCS) algorithm. The obtained simulation results have led to the conclusion that the proposed sparse 

filter surpasses existing methods, such as weighted least square (WLS) and Minimax, in terms of achieving the optimal 

solution with minimal error and enhanced sparsity. Nevertheless, it is important to note that the design complexity and 

power consumption aspects were not explicitly addressed in this particular filter design approach. The research carried out 

by [6] introduces an algorithm that offers computational efficiency in the design of linear-phase sparse finite impulse 

response (FIR) filters. This algorithm focuses on optimizing both the magnitude and phase responses of the filter while 

adhering to sparsity constraints on the filter coefficients. Through extensive evaluation on various benchmark signal 

processing tasks, the results highlight the superiority of the proposed algorithm in terms of computational efficiency and 

filter performance. The algorithm effectively achieves optimized magnitude and phase responses while maintaining 

sparsity in the filter coefficients. 
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Furthermore, the Binary Generalized Orthogonal Matching Pursuit (BGOMP) algorithm was recently proposed by [22]. 

BGOMP is a promising algorithm for recovering sparse signals from a small number of measurements. BGOMP is 

specifically designed for recovering binary-valued sparse signals. It works by iteratively selecting the index of the 

measurement that is most correlated with the residual signal, and then updating the residual signal by subtracting the 

projection of the measurement onto the selected index. It is efficient and effective, and has been shown to outperform 

several recent algorithms in terms of recovery accuracy and computational efficiency. However, there are still some 

challenges that need to be addressed in order to make BGOMP more widely applicable. One challenge is recovering sparse 

signals from noisy measurements. BGOMP is not designed to handle noise, and it can be sensitive to noise in the 

measurements. Another challenge is understanding the underlying mathematical properties of binary-valued sparse signals. 

This understanding is needed in order to develop better algorithms for recovering binary-valued sparse signals. From the 

above literature it is clear that while considerable amount of work has already been done in the aspect of designing sparse 

FIR filters, there exists several research questions related to quantization effects on filter response, computational 

complexity related to certain algorithms, reality of sparse signal assumptions, two dimensional filters, optimization related 

issues such as convergence and efficiency, design complexity and power considerations, filter performance in presence of 

noise, and theoretical analysis of binary sparse signals. This research therefore aimed at using Double generalized 

Orthogonal Matching Pursuit to design an efficient, effective, and non-complex sparse FIR filter 

3. METHODOLOGY 

3.0  Mathematical Exploitations Summary 

1. Objective function: minimize ||𝑥 − 𝐻𝑏||
2

2
        

2. Sparsity constraint: subject to ||𝑏0|| ≤ 𝐾 

3. Correlation vector: 𝑔 = |(𝐻𝑇𝑟)|   

4. Least-squares problem: �̂�𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛||𝑟 − 𝐻𝐴𝑏𝐴||
2

2
 

5. Inverse Fourier transform: h(n) = IDFT[b] 

6. Mean-squared error: 𝑀𝑆𝐸 =
||𝑥−𝑦||

2

𝑁
 

7. Sparsity of filter coefficients: 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =  
||𝑏||0 

𝑁
   

3.1 Problem Formulation 

The primary aim of this study is to develop an FIR filter with sparsity characteristics, focusing on effectively 

attenuating signal noise while minimizing the utilization of filter coefficients thereby reducing memory usage. Suppose we 

want to design an N-tap Finite Impulse response filter with h[n] that meets a desired frequency response specification d[k], 

where k = 0, 1, ..., K-1, and K being the number of frequency samples. We can represent the filter output as: 

𝑦[𝑘] = 𝐻(𝑧)𝑥[𝑘]                                     (1) 

where H(z) represents the z-transform of the impulse response h[n] of the filter, while x[k] denotes the input signal. 

Minimize||𝑑 − 𝐻(𝑧)𝑐||
2

2
subject to ||𝑐0|| ≤ 𝑁                                    (2) 

where c is the vector of filter taps,  ||𝑐||2 denotes the L2 norm, while ||𝑐0|| indicates the L0 norms. This can be written as; 

 Minimize  ||𝑥 − 𝐻𝑏||
2

2
 subject to      ||𝑏0|| ≤ 𝐾                           (3) 

where x represents the input signal, H denotes the matrix of the FIR filter, b indicates the vector of filter coefficients, ||𝑏0|| 
refers to the zero-norm which quantifies the count of non-zero elements in a vector, and K represents the sparsity constraint 

that sets an upper limit on the number of non-zero filter coefficients. 

3.2  Double GOMP algorithm 

We propose to use the double Generalized Orthogonal Matching Pursuit (D-GOMP) algorithm to solve the 

optimization problem. The double GOMP algorithm is an extension of the classic GOMP algorithm that can better handle 

over complete dictionaries and noisy signals. 

The double GOMP algorithm consists of two stages: a forward stage and a backward stage. In the forward stage, the 

algorithm selects the filter coefficients that have the highest correlation with the input signal and adds them to the active set. 

In the backward stage, the algorithm removes the filter coefficients that contribute the least to the reconstruction error. 

We implement the double GOMP algorithm using the following steps: 
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Figure 1: Flow chart of the developed algorithm 
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Initialize  

a. Initialize the active set A to an empty set and the residual r to the input signal x. 

While the sparsity constraint K is not reached:  

Compute the correlation vector g between the residual r and the filter matrix 

H as 𝑔 = |(𝐻𝑇𝑟)|                            (4) 

b. Find the indices of the s largest elements of g and add them to the active set A.  

c. Solve the least-squares problem �̂�𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛||𝑟 − 𝐻𝐴𝑏𝐴||
2

2
               (5)  

for the filter coefficients corresponding to the active set A. 

d. Update the residual as  𝑟 = 𝑥 − 𝐻𝐴𝑏𝐴                    (6) 

Use the backward stage to remove the filter coefficients that have the least impact on the reconstruction error. 

Specifically, we remove the filter coefficients that have a correlation value below a certain threshold 𝜏 

3.3  Filter Design 

Once the double GOMP algorithm has converged, we obtain the sparse FIR filter coefficients b corresponding to the 

active set A. We then use these coefficients to design the sparse FIR filter h[n] by inverse Fourier transforming b: 

ℎ(𝑛) = 𝐼𝐷𝐹𝑇(𝑏)                            (7) 

where IDFT is the inverse discrete Fourier transform. 

3.4 Performance Evaluation 

We evaluate the performance of the proposed method using two criteria: the reconstruction error and the sparsity of the 

filter coefficients. The reconstruction error is measured as the mean-squared error (MSE) between the original signal x and 

the filtered signal y: 

𝑀𝑆𝐸 =
||𝑥−𝑦||

2

𝑁
                            (8) 

where N is the length of the signal. 

The sparsity of the filter coefficients is measured as the ratio of the number of non-zero coefficients to the total number 

of coefficients: 

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =  
||𝑏||0 

𝑁
                            (9) 

We compare the performance of our method with that of existing methods, such as the ideal FIR filter and the classic 

GOMP algorithm. We also evaluate the robustness of our method to noise and varying sparsity constraints. 

3.5  Mathematical Derivations of each Stage 

The objective function represents the error between the input signal and the filtered signal. It is formulated as the 

squared norm of the difference between the input signal x and the filtered signal Hb. 

Expanding eqn. (5) gives 

||𝑥 − 𝐻𝑏||
2

= (𝑥 − 𝐻𝑏)𝑇(𝑥 − 𝐻𝑏) = 𝑥𝑇𝑥 − 2𝑥𝑇𝐻𝑏 + 𝐻𝑏𝑇 𝐻𝑏               (10) 

To minimize the objective function, we take the derivative with respect to b and set it to zero: 

 

  
𝑑

𝑑𝐵
(𝑥𝑇𝑥 − 2𝑥𝑇𝐻𝑏 + 𝑏𝑇𝐻𝑇𝐻𝑏) =  −2𝑥𝑇𝐻 + 2𝐻𝑇𝐻𝑏 = 0                  (11) 

Solving for b, we get: 

𝑏 = (𝐻𝑇𝐻)−1𝐻𝑇𝑥                           (12) 

The sparsity constraint limits the number of non-zero filter coefficients to K. The zero-norm is not a convex function, 

so it is not directly solvable by linear programming methods. Instead, we use an approximation by replacing it with the L1-

norm. 

||𝑏0|| = ∑ ||𝑏𝑖 ||𝑖 ≤ ∑ √(𝑏𝑖
2)𝑖 ≤ √(∑ 𝑏𝑖𝑖 )2                         (13) 

Using the L2-norm approximation, we can reformulate the sparsity constraint as; 

||𝑏||2 ≤ √𝐾                             (14) 

The correlation vector is computed as the absolute value of the dot product between the residual and each column of the 

filter matrix. The least-squares problem finds the optimal filter coefficients for the active set A that minimizes the residual 

error. 
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�̂�𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛||𝑟 − 𝐻𝐴𝑏𝐴||
2

2
                     

To solve the least-squares problem, we take the derivative with respect to 𝑏𝐴 and set it to zero: 

𝑑

𝑑𝑏𝐴
(𝑟𝑇𝑟 − 2𝑟𝑇 𝐻𝐴𝑏𝐴 + 𝑏𝐴

𝑇 𝐻𝐴 
𝑇 𝐻𝐴𝑏𝐴) = −2𝐻𝐴

𝑇𝑟 + 2𝐻𝐴 
𝑇 𝐻𝐴𝑏𝐴 = 0               (15) 

Solving for 𝑏𝐴, we get: 

𝑏𝐴 = (𝐻𝐴
𝑇𝐻𝐴)−1 𝐻𝐴 

𝑇 𝑟                           (16) 

To derive the expression for correlation coefficient, g we start with the least-squares problem such that; 

𝑚𝑖𝑛||𝑟 − 𝐻𝑏||
2

2
  

Taking the derivative with respect to b and setting it to zero yields; 

𝐻𝑇(𝑟 − 𝐻𝑏) = 0                            (17) 

Solving for b, we get; 

𝑏 = (𝐻𝑇𝐻)−1𝐻𝑇𝑟                            (18) 

Substituting this expression for b back into the original least-squares problem, we get; 

min||𝑟 − 𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑟||
2
                         (19) 

Let 𝐻𝐻=𝐻(𝐻𝑇𝐻)−1𝐻𝑇   be the projection matrix onto the columns of H. Then we can write; 

𝑟 − 𝐻𝐻 𝑟 = (𝐼 − 𝐻𝐻)𝑟                          (20) 

as the part of r that is not in the column space of H. The projection of r onto the column space of H is 𝐻𝐻 𝑟 

The correlation between r and H is given by the projection of r onto the column space of H: 

𝑔 = 𝐻𝑇(𝐻𝐻 𝑟) = (𝐻𝑇𝐻)(𝐻𝑇𝐻)−1 𝐻𝑇𝑟 = 𝐻𝑇𝑟                     (21) 

Taking the absolute value of each element of g, we get; 

𝑔 = |𝐻𝑇𝑟|                              (22) 

Inverse Fourier transform: The inverse Fourier transform converts the frequency-domain filter coefficients to the time-

domain filter. 

h(n) = IDFT[b] 

where IDFT is the inverse discrete Fourier transform. 

The DFT is defined as: 

𝐵𝑘 =  ∑ ℎ(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑘=0                          (23) 

where h(n) is the time-domain representation of the filter coefficients, N is the number of frequency points, and j is the 

imaginary unit. 

Taking the inverse transform of the DFT; 

ℎ(𝑛) =  
1

𝑁
∑ 𝐵𝑘

𝑁−1
𝑘=0 𝑒 𝑗2𝜋𝑘𝑛/𝑁                        (24) 

The equation for the inverse discrete Fourier transforms (IDFT) used in the proposed method is; 

ℎ(𝑛) =  
1

𝑁
∑ 𝐵𝑘

𝑁−1
𝑘=0 𝑒 𝑗2𝜋𝑘𝑛/𝑁        

where h(n) is the time-domain representation of the filter coefficients 𝐵𝑘,  N is the number of frequency points, and j is the 

imaginary unit. 

The IDFT is used to obtain the time-domain representation of the filter coefficients from their frequency-domain 

representation. This equation can be used to obtain the time-domain representation of the filter coefficients from their 

frequency-domain representation, which is required for implementing the proposed method. 

The mean-squared error measures the difference between the original signal and the filtered signal. 

Given a signal x and its filtered version y, the mean-squared error (MSE) between the two signals can be defined as: 

𝑀𝑆𝐸 =  
1

𝑁
∑ [𝑥(𝑛) − 𝑦(𝑛)]2𝑁−1

𝑛=0                         (25) 

where N is the length of the signal. 

Expanding the square term and rearranging, we get: 

𝑀𝑆𝐸 =  
1

𝑁
∑ [𝑥(𝑛)2 + 𝑦(𝑛)2 − 2𝑥(𝑛)𝑦(𝑛)]2𝑁−1

𝑛=0                     (26) 
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Using the fact that the sum of the first two terms is a constant that does not depend on the filter, we can simplify the 

equation as: 

𝑀𝑆𝐸 =  
1

𝑁
∑ −2[𝑥(𝑛) ∗ 𝑦(𝑛)]𝑁−1

𝑛=0                          (27) 

Multiplying both sides by -2 and rearranging, we have: 

𝑀𝑆𝐸 =  
2

𝑁
∑ 𝑥(𝑛) ∗ 𝑦(𝑛)𝑁−1

𝑛=0                          (28) 

Using the fact that the filter output y(n) is given by the convolution of the input x(n) with the filter h(n), we can express 

y(n) as: 

𝑦(𝑛) =  ∑ ℎ(𝑛)⍟𝑥(𝑛 − 𝑘)𝑀−1
𝑛=0                         (29) 

where M is the length of the filter. 

Substituting y(n) in the equation for MSE, we get: 

𝑀𝑆𝐸 = ( 
2

𝑁
) ∑ 𝑥(𝑛)𝑁−1

𝑛=0 ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)𝑀−1
𝑘=0   

Expanding the inner sum, and rearranging the terms we obtain: 

𝑀𝑆𝐸 = ( 
2

𝑁
) ∑ ℎ(𝑘)𝑀−1

𝑘=0 ∑ 𝑥(𝑛 − 𝑘) ∗ 𝑥(𝑛)𝑁−1
𝑛=0                     (30) 

Using the fact that the sum inside the parentheses is the autocorrelation function Rxx(k), we have: 

𝑀𝑆𝐸 =  
2

𝑁
∑ ℎ(𝑘) ∗ 𝑅𝑥𝑥(𝑘)𝑀−1

𝑘=0                          (31) 

And finally,  

𝑀𝑆𝐸 =
||𝑥−𝑦||

2

𝑁
   where N is the length of the signal.                  (32) 

This expression relates the MSE to the filter coefficients and the autocorrelation function of the input signal. It can be 

used to evaluate the performance of the filter and compare it with other methods. 

The sparsity of filter coefficients measures the ratio of the number of non-zero coefficients to the total number of 

coefficients. 

To derive the expression for sparsity we start with the definition of the zero norm||𝑏||0  which equals the number of 

non-zero elements in b. Let S be the set of indices of the non-zero elements in b. Then, we can write: 

||𝑏||0 = |𝑆|                              (33) 

where |S| denotes the cardinality of the set. 

Substituting this expression into the expression for sparsity, in (8) we get: 

||𝑏||0 

𝑁
=  

|𝑆|

𝑁
                              (34) 

This gives us the expression for sparsity in terms of the set S and the length N of the signal. 

3.6 Simulation Setup 

In this algorithm, Python was used to model the Double Generalized Orthogonal Matching Pursuit Double GOMP) 

approach to develop a sparse Finite Impulse Response (FIR) filter. This simulation was conducted on a Lenovo laptop with 

a 12th generation Intel Core i5 processor and a processor of 2. 4GHz, depending on the computational power of the 

hardware to execute the algorithm effectively. 

The preparation for the simulation process started with the import of the basic libraries for the numerical calculations, 

the linear algebra and user defined codes based on the modeled equations. Next, the signal and filter parameters were 

declared, where the input signal ‘x’ was generated using random signals and the filter matrix ‘H’ was created using 

Discrete Fourier Transform (DFT) matrix with ‘M’ number of taps and ‘K’ number of sparse values. 

The initializations for the algorithm included creating an empty active set for the filter taps, setting the residual equal to 

the input signal, and setting the filter coefficients. The Double GOMP algorithm was then applied iteratively to identify the 

filter taps with high correlation and low residual values and then update the filter coefficients for sparse representation. 

After the algorithm execution, the filter output ‘y’ was obtained to calculate the reconstruction accuracy using the MSE 

and the sparsity of the filter design using the sparsity metric. These performance metrics offered valuable information on 

the efficiency of the sparse FIR filter design obtained using the Double GOMP algorithm. 
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4. RESULTS AND DISCUSSION 

This section presents the results obtained from the design using the proposed Double Generalized Orthogonal Matching 

Pursuit (DGOMP) algorithm. In this section, we confirm the effectiveness of our designed Sparse FIR Filter through 

presentation of Figures and their interpretations. 

        

Figure 2a: Sparse FIR filter result with OMP     Figure 2b: Sparse FIR Filter with DGOMP 

 

The sparsity of the filter from Figure 2a is calculated by counting the number of non-zero coefficients. A higher 

sparsity value indicates a more efficient filter design with fewer coefficients. In this case, the sparse filter has only 9 non-

zero coefficients out of 100, indicating a poor level of sparsity. It is worth noting that Figure 2a was generated with 

classical OMP for which the constraints were not implemented. This shows the sparsity of 9.0% for the non-zero element. 

While Figure 2b shows the filter coefficient of DGOMP and BGOMP. The DGOMP algorithm has only 2 non zero 

coefficient in filter design out of the 100 available tap index. This shows the sparsity level of 98%. 

 

 
Figure 3: Frequency response of sparse fir filter 

Figure 3 shows the frequency response of an ideal FIR filter compared to a sparse FIR filter. The magnitude otherwise 

known as attenuation in dB is plotted on the y-axis, while the normalized frequency (0 to pi) is on the x-axis. The ideal 

filter exhibits a constant 0 dB magnitude across the passband, indicating perfect transmission in that range. It then drops 

sharply to 0 dB at and beyond the stopband, achieving complete attenuation. In contrast, the sparse FIR filter, designed for 

computational efficiency, deviates from the ideal response. While it maintains a magnitude close to 0 dB in the passband, it 

exhibits some ripple (slight fluctuations) in the amplitude of the desired frequencies, particularly between 0.2 and 0.4 

normalized frequency. Additionally, the sparse filter's magnitude doesn't reach 0 dB in the stopband, implying that some 

unwanted frequencies leak through at a reduced level compared to the ideal filter. The transition band, where the 

magnitude goes from near 0 dB to lower values, is wider for the sparse FIR filter compared to the ideal filter. This wider 

transition band indicates a less sharp separation between desired and unwanted frequencies. The sparse FIR filter in Figure 

3 offers a reasonable approximation to the ideal filter. It allows the desired frequencies to pass with some acceptable ripple 

and attenuates unwanted frequencies to a certain extent. 
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Figure.4: zero coefficient verses Non zero coefficient 

 

Figure 4 illustrates the non-zero elements of a sparse FIR filter. Each vertical line represents a non-zero coefficient, and its 

height indicates the magnitude of that coefficient. The tap index corresponds to the position of the coefficient within the 

filter's impulse response. The sparsity of the filter is evident from the presence of numerous zero-valued coefficients 

 

 
Figure 5: Time of execution 

 

The time of execution was also measured. Figure 5 indicates the execution time of the algorithm for different signal 

lengths, demonstrating the computational efficiency of the Double GOMP algorithm in comparison to other methods. The 

results are plotted on a log-log scale, showing that the execution time scales logarithmically with the signal length, 

indicating that the algorithm is well-suited for processing long signals. As the length of the signal increases, the 

computational time increase but faster than that of BOMP. For 8000 signal length, it takes 9 times for the DGOMP while 

taking BOMP about 10 times to complete. This indicates that there is steady decrease of 10% in DGOMP compared to 

BOMP. 

The Double GOMP algorithm can be useful in a variety of applications where sparse filtering is required, such as in 

audio and image processing. By selectively choosing relevant filter coefficients, the algorithm can reduce computational 

complexity and memory requirements while still achieving high-quality filtering results.  

A noisy signal consisting of two sinusoids with frequencies 0.1 and 0.3 was generated in Figure.6a, and then applies a 

double GOMP algorithm to filter the signal. The filter matrix is constructed by convolving the original signal with 

randomly generated impulse responses. The double GOMP algorithm is used to identify the sparsest subset of columns of 
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the filter matrix that best approximates the original signal. The resulting filter coefficients are then used to filter the 

original signal. The output shows three plots in Figure. 6b. The first plot shows the original signal in blue and the filtered 

signal in orange. The filtered signal has removed 98.8% of the noise from the original signal and has preserved the 

underlying sinusoids. The second plot shows the magnitude of the filter coefficients. The filter is highly sparse, with 7% of   

non-zero coefficients. The third plot shows the residual signal, which is the difference between the original signal and the 

filtered signal. The residual signal has a low 8.3% amplitude, indicating that the filtered signal is a good approximation of 

the original signal. 

 

 
Figure.6a: Generate noisy signal 

 

 
Figure 6b: Signal noise approximation 

 

 The double GOMP algorithm has done a good job of filtering the noisy signal and preserving the underlying 

sinusoids. The resulting filter is highly sparse, which makes it computationally efficient to apply. The residual signal is low, 

indicating that the filtered signal is a good approximation of the original signal. Double GOMP extends GOMP by adding a 

backward stage that removes redundant atoms selected in the forward stage. This can further improve the accuracy and 

robustness of the algorithm, as well as reduce the number of atoms needed to represent the signal. 
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5. CONCLUSION 

This paper focuses on the use of Double Generalized Orthogonal Matching Pursuit (DGOMP) in the development of 

sparse Finite Impulse Response (FIR) filters. We express the mathematical models for DGOMP and carry out simulation. 

The result was first compared with Ideal Filters to evaluate the accuracy of the proposed method. Additionally, our study 

indicates that the sparse FIR filters designed utilizing DGOMP require a shorter execution time as compared to those 

designed by BGOMP. This is equivalent to less memory utilization and lower computational demand on each 

computational unit. In summary, the results discussed in this paper also showcase that the proposed DGOMP can be further 

explored and used as an efficient approach of designing sparse FIR filters that have widespread utilization in signal 

processing. 
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