Assessment of Suspended Particulate Matter (SPM) and Toxicity Potential (TP) of Emissions from Different Power Generating Sets in Ado-Ekiti, Nigeria

Main Article Content

Omobusuyimi Matthew Kolawole
Olusola Olayemi Omole
Olusola Adedayo Adesina

Abstract

This research investigated the levels of Suspended Particulate Matter (SPM) resulting from the emissions of various power generators in Nigeria. Additionally, the study conducted risk assessments concerning the inhalation of this pollutant from different power generators, and proposed suitable measures to control the emission of SPM linked to the use of power generators. To capture the exhaust from each generator set, a sampling technique was employed. This involved using a sample probe, a filter, and a filter holder to trap the gas emissions in a sequential manner. The concentration of SPM in the air was calculated based on several factors, including the weight difference of the filter paper before and after sampling, the sampling duration, and the flow rate. The concentration of suspended particulate matter for the 16 different generating sets varied from 1413.4 µg/m3 to 5300 µg/m3, with an average concentration of 2912.98 µg/m3. These values surpassed both the World Health Organization (WHO) standard of 50 µg/m3 and the Nigeria Ambient Air Quality Standard of 250 µg/m3. The study's findings indicate that power generating sets emit Suspended Particulate Matter (SPM) through their gas exhaust. Moreover, the results demonstrate that the generator samples lacking a galvanized mesh at the gas stream exhaust exhibit significantly higher toxicity potential compared to those with the galvanized mesh. This research established that SPM concentrations were found from the exhaust of different power generating sets.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
O. M. Kolawole, O. O. Omole, and O. A. Adesina, “Assessment of Suspended Particulate Matter (SPM) and Toxicity Potential (TP) of Emissions from Different Power Generating Sets in Ado-Ekiti, Nigeria”, AJERD, vol. 6, no. 2, pp. 50–56, Sep. 2023.
Section
Articles

References

Amarachi, N., Emeka, O., Christopher, A., Lovell, A., & Conrad, E. (2016). Emissions of gasoline combustion by products in automotive exhausts. Int J Sci Res Publ, 6(4), 464-2250.

Ahmad, M., Rihawy, M.S., Haydr, R., Tlass, M., Roumie, M. & Srour, A. (2020). PIXE and statistical analysis of fine airborne particulate matter (PM2. 5) in Damascus. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 462, 75-81. DOI: https://doi.org/10.1016/j.nimb.2019.11.003

Ali, M.U., Liu, G., Yousaf, B., Ullah, H., Abbas, Q. & Munir, M.A.M. (2019). A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environmental geochemistry and health, 41, 1131-1162. DOI: https://doi.org/10.1007/s10653-018-0203-z

Bhat, M.S., Afeefa, Q.S., Ashok, K.P. & Bashir, A.G. (2014). Brick kiln emissions and its environmental impact: A Review. Journal of Ecology and the Natural Environment, 6(1), 1-11. DOI: https://doi.org/10.5897/JENE2013.0423

Ćurić, M., Zafirovski, O., Spiridonov, V., Ćurić, M., Zafirovski, O. & Spiridonov, V. (2022). Air quality and health. Essentials of medical meteorology, 143-182. DOI: https://doi.org/10.1007/978-3-030-80975-1_8

El-Shahawi, M., Hamza, A., Bashammakh, A.S., & Al-Saggaf, W. (2010). An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta, 80(5), 1587-1597. DOI: https://doi.org/10.1016/j.talanta.2009.09.055

David, A., Kesiye, I., Stephen, U., Nimibofa, A. & Etta, B. (2017). Measurement of total suspended particulate matter (TSP) in an urban environment: Yenagoa and its environs. Journal of Geography, Environment and Earth Science International, 11(3), 1-8. DOI: https://doi.org/10.9734/JGEESI/2017/35765

Giwa, S.O., Nwaokocha, C.N. & Samuel, D.O., (2019). Off-grid gasoline-powered generators: pollutants’ footprints and health risk assessment in Nigeria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-18. DOI: https://doi.org/10.1080/15567036.2019.1671555

Khwaja, M.A., Shams, T. & Tahira, Q. (2020). Pakistan National Ambient Air Quality Standards: A comparative Assessment with Selected Asian Countries and World Health Organization (WHO).

Kim, K.H., Jahan, S.A. & Kabir, E. (2011). A review of diseases associated with household air pollution due to the use of biomass fuels, Journal of hazardous materials, 192(2), 425-431. DOI: https://doi.org/10.1016/j.jhazmat.2011.05.087

Leni, Z., Künzi, L. & Geiser, M. (2020). Air pollution causing oxidative stress. Current Opinion in Toxicology, 20, 1-8. DOI: https://doi.org/10.1016/j.cotox.2020.02.006

Obanya, H.E., Amaeze, N.H., Togunde, O. & Otitoloju, A.A. (2018). Air pollution monitoring around residential and transportation sector locations in Lagos Mainland, Journal of Health and Pollution, 8(19), 180903. DOI: https://doi.org/10.5696/2156-9614-8.19.180903

Odediran, E.T., Adeniran, J.A., Yusuf, R.O., Abdulraheem, K.A., Adesina, O.A., Sonibare, J.A., & Du, M. (2021). Contamination levels, health risks and source apportionment of potentially toxic elements in road dusts of a densely populated African City. Environmental Nanotechnology, Monitoring & Management, 15, 100445. DOI: https://doi.org/10.1016/j.enmm.2021.100445

Sambo, A.S., Garba, B., Zarma, I.H., & Gaji, M.M. (2010). Electricity generation and the present challenges in the Nigerian power sector 17(5).

Tawabini, B.S., Lawal, T.T., Shaibani, A., & Farahat, A.M. (2017). Morphological and chemical properties of particulate matter in the dammam metropolitan region: Dhahran, Khobar, and Dammam, Saudi Arabia. Advances in Meteorol 20(17). DOI: https://doi.org/10.1155/2017/8512146

Tissari, J., Lyyränen, J., Hytönen, K., Sippula, O., Tapper, U., Frey, A., Saarnio, K., Pennanen, A.S., Hillamo, R. & Salonen, R.O. (2008). Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmos. Environ, 42, 7862–7873. DOI: https://doi.org/10.1016/j.atmosenv.2008.07.019

Kwasny, F., Madl, P. & Hofmann, W. (2010). Correlation of air quality data to ultrafine particles (UFP) concentration and size distribution in ambient air. Atmosphere, 1, 3–14. DOI: https://doi.org/10.3390/atmos1010003

Hosseini, S., Li, Q., Cocker, D., Weise, D., Miller, A., Shrivastava, M., Miller, J.W., Mahalingam, S., Princevac, M. & Jung, H. (2010). Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys., 10, 8065–8076. DOI: https://doi.org/10.5194/acp-10-8065-2010

Costa, M.A.M., Carvalho, J.A., Neto, T.G.S., Anselmo, E., Lima, B.A., Kura, L.T.U. & Santos, J.C. (2012). Real-time sampling of particulate matter smaller than 2.5 μm from Amazon forest biomass combustion. Atmos. Environ. 2012, 54, 480–489. DOI: https://doi.org/10.1016/j.atmosenv.2012.02.023

França, D.D.A., Longo, K.M., Neto, T.G.S., Santos, J.C., Freitas, S.R., Rudorff, B.F.T., Cortez, E.V., Anselmo, E. & Carvalho, J.A. (2012). Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements. Atmosphere, 3, 164–180. DOI: https://doi.org/10.3390/atmos3010164

Nakata, M., Sano, I., Mukai, S. & Holben, B. (2013). Spatial and Temporal Variations of Atmospheric Aerosol in Osaka. Atmosphere, 4, 157–168. DOI: https://doi.org/10.3390/atmos4020157

Leskinen, J., Tissari, J., Uski, O., Virén, A., Torvela, T., Kaivosoja, T., Lamberg, H., Nuutinen, I., Kettunen, T. & Joutsensaari, J. (2014). Fine particle emissions in three different combustion conditions of a wood chip-fired appliance Particulate physico-chemical properties and induced cell death. Atmos. Environ. , 86, 129–139. DOI: https://doi.org/10.1016/j.atmosenv.2013.12.012

Nussbaumer, T., Czasch, C., Klippel, N., Johansson, L. & Tullin, C. (2008). Particulate emissions from biomass combustion in IEA countries. In Proceeding of the 16th European Biomass Conference and Exhibition, Zurich, Switzerland, p. 40.

Obaidullah, M., Bram, S., Verma, V. & De-Ruyck, J. (2012). A review on particle emissions from small scale biomass combustion. Int. J. Renew. Eergy Res., 2, 147–159.

Wilson, W.E., Chow, J.C., Claiborn, C., Fusheng, W., Engelbrecht, J. & Watson. (2002). J.G. Monitoring of particulate matter outdoors. Chemosphere, 49, 1009–1043. DOI: https://doi.org/10.1016/S0045-6535(02)00270-9

Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axmann, H., Bergmann, A. & Schindler, W. (2014). Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. J. Aerosol Sci., 67, 48–86. DOI: https://doi.org/10.1016/j.jaerosci.2013.09.003

Wark, K., Warner, C.F. & Davis, W.T. (1998). Air Pollution: Its Origin and Control, 3rd ed.; Addison-Wesley-Longman: Boston, MA, USA.

Vincent, J.H. (2007). Aerosol Sampling: Science, Standards, Instrumentation and Applications; JohnWiley & Sons: Hoboken, NJ, USA. DOI: https://doi.org/10.1002/9780470060230

Turner, J. & Colbeck, I. Physical and chemical properties of atmospheric aerosols. (2008). In Environmental Chemistry of Aerosols, 3rd ed.; Colbeck, I., Ed.; Blackwell Publishing Ltd.: Oxford, UK. DOI: https://doi.org/10.1002/9781444305388.ch1

Kulkarni, P., Baron, P.A. & Willeke, K. (2011). Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed.; JohnWiley & Sons: Hoboken, NJ, USA. DOI: https://doi.org/10.1002/9781118001684