Effects of Annealing Soaking Time on Carbide Precipitates and Mechanical Properties of As-Cast Thin Wall Ductile Iron
Main Article Content
Abstract
Thin Wall Ductile Irons (TWDI) are viable material option in the automotive industry due of their good castability, adequate mechanical properties, wear resistance, good machinability and fatigue properties. However due to size reduction and increased cooling rate, carbide precipitates occur in the as-cast microstructure of TWDIs, impacting negatively on mechanical properties, nodularity and nodule count. Heat treatment processes that reduce or eliminate these carbide phases can be adopted to remedy such defects. In this study, 4 mm TWDI samples cast in green sand moulds, showing carbide precipitation in microstructure were subjected to an Annealing heat treatment by austenizing to 920oC and varying soaking times of 5, 10, 15, 20, 25 and 30 minutes, afterwards they were cooled in the furnace to room temperature. Microstructural analysis and mechanical property tests were carried out in all the samples via Optical microscopy (OM) and Scanning electron microscopy (SEM), hardness and tensile tests. Microstructure of heat-treated samples showed significant reduction of carbide precipitates in comparison with their as cast counterpart. It was observed that the soaking time impacted on carbide precipitation reduction. Hardness values reduced from 291.6 Hv in the as cast sample to 247.8 Hv and 243.5 Hv for samples soaked for 25 and 30 minutes respectively, whereas tensile strength reduced progressively from 596 MPa to 544 MPa for as cast to 30 minutes soaking time respectively. Percent elongation increased from 4.3 % elongation for the as cast sample to 8.7 % elongation in the sample with soaking time of 30 minutes at 920 oC. This study has shown that carbide precipitation can be significantly reduced by adopting the annealing treatment parameters outlined above.
Downloads
Article Details
References
Caldera, M., Chapetti, M., Massone, J. M. & Sikora, J. M. (2007). Influence of Nodule Count on the Fatigue Properties of Ferritic Thin Wall Ductile Iron. Materials Science and Eng., 23(8), 1001-1004. http://dx.doi.org/10.1179/174328407X185910 DOI: https://doi.org/10.1179/174328407X185910
Fraś, E., Górny, M. & Kapturkiewicz, W. (2013). Thin Wall Ductile Iron Castings: Technological Aspects, Achieves of Foundry Eng., 13(1), 23-28. http://dx.doi.org/10.2478/afe-2013-0005 DOI: https://doi.org/10.2478/afe-2013-0005
Serna, M. M., Jesus, E. R. B., Galego, E., Martinez, L. G., Correa, H. P. S. & Rossi, J. L. (2006). An Overview of the Microstructures Present in High-Speed Steel Carbides Crystallography, Materials Science Forum, (530-531), 48-52. http://dx.doi.org/10.4028/www.scientific.net/MSF.530-531.48 DOI: https://doi.org/10.4028/www.scientific.net/MSF.530-531.48
Skaland, T (2005). Proceedings. AFS Cast Iron Inoculation Conference., Schaumburg, IL, USA.13–30. https://books.google.com/books/about/Proceedings_of_the_AFS_Cast_Iron_Inocula.html?id=55nfPgAACAAJ
Smith, W. F. & Hashemi, J. (2006). Foundations of Materials Science and Engineering. 4th Edition, McGraw-Hill Higher Education, New York. https://scirp.org/reference/referencespapers.aspx?referenceid=490140
Ochulor, E. F, Amuda, M.O.H, Adeosun, S. O. & Balogun, S. A. (2018). Potential of Green Sand Rice Husk Ash Mould as Carbide Deactivator in Thin Wall Ductile Iron, The West Indian Journal of Engineering (WIJE), 41(1), 4-12.
Davis, J. R. (1996). ASM Specialty Handbook Cast Irons. ASM International. The Material Information Society. 65-68.
Ochulor, E. F, Adeosun, S. O, Ekeleme, J. U., Ugboaja J. O. & Nnaji R. N. (2019). Carbide Characterization in Single and Double Step Inoculated Thin Wall Ductile Iron, Unilag Journal of Medicine, Science and Technology, 6(1), 15-32.
Mourad, M. M., El-Hadad, S., Ibrahim, M. M., & Nofal, A. A. (2015). Effect of Processing Parameters on the Mechanical Properties of Heavy Section Ductile Iron, Journal of Metallurgy, 1–11. http://dx.doi.org/10.1155/2015/931535 DOI: https://doi.org/10.1155/2015/931535
Riebisch, M, Pustal, B. & Bu¨hrig-Polaczek A. (2020). Influence of Carbide Promoting Elements on the Microstructure of High Silicon Ductile Iron, International Journal of Metalcasting, 14(4), 1152-1161. http://dx.doi.org/10.1007/s40962-020-00442-1 DOI: https://doi.org/10.1007/s40962-020-00442-1
Akinribide, O. J., Ogundare, O. D., Oluwafemi, O. M., Ebisike, K., Nageri, A. K., Akinwamide, S. O., Gamaoun, F. & Olubambi, P. A. (2022). A Review on Heat Treatment of Cast Iron: Phase Evolution and Mechanical Characterization, Materials, 15(20), 7109. http://dx.doi.org/10.3390/ma15207109 DOI: https://doi.org/10.3390/ma15207109
Rao, S. V., Venkataramana, M. & Kumar, A. C. S. (2014). Effect of Heat Treatment Processes on Ductile Cast Iron Mechanical Properties - An experimental approach, International Journal of Advanced Technology in Engineering and Science, 2(12), 221-226.
Sulamet-Ariobimo, R. D., Santoso, J. R., Fadhlan, M., Yasin, T., Sukarnoto, T., Mujalis, Y. & Oktaviano, Y. (2020). The Effects of Austenitizing Process to Mechanical Properties of Thin Wall Ductile Iron Connecting Rod. AIP Conference Proceedings 2262, 060006. http://dx.doi.org/10.1063/5.0016141 DOI: https://doi.org/10.1063/5.0016141
Ganesh, V. & Singh K. K. (2014). Thin Wall Austempered Ductile Iron: A Best Replaceable Material to Steel and Aluminum, International Journal of Mechanical Engineering and Robotics Research 3(3), 465-473.
Giacopini, A., Boeri, R. E. & Sikora, J. A. (2003). Carbide Dissolution in Thin Wall Ductile Iron, Materials Science and Technology, 19, 1755-1760. http://dx.doi.org/10.1179/026708303225009445 DOI: https://doi.org/10.1179/026708303225009445
Idham, M. F., Abdullah, B., Syarif, J., Jaffar, A., Alias, S. K. & Saad, N. H. (2013). Microstructure and XRD of Ductile Iron Using Annealing-Tempering Heat Treatment Process, Applied Mechanics and Materials, 393, 83–87. http://dx.doi.org/10.4028/www.scientific.net/AMM.393.83 DOI: https://doi.org/10.4028/www.scientific.net/AMM.393.83