Formulation Ratio Effectiveness of Green Metal Working Fluid (GMWF) as a Bio Alternative for Green Manufacturing

Main Article Content

Vincent Aizebeoje Balogun
Victoria Dumebi Obasa
Ohiozoje Bobo Ohikhuare
Jeremiah Odion Akhimien
Wilfred Onoshiorena Ikalumhe

Abstract

Metalworking fluid (MWF) is essential for ensuring quality products and extended tool life during machining operations. While there are various sources of MWF, the need to minimize health hazards associated with mineral-based metal working fluid now calls for more environmentally friendly green metal working fluid (GMWF) from bio-degradable sources. Also, the effectiveness of vegetable-based GMWF significantly depends on the degree of functionalization. Though some studies considered the issue, the comparative analysis of the effect formulations (variation in concentration) of the constituting elements of the GMWF, especially for the base vegetable oil under consideration; has been grossly underreported. In this study, a GMWF emulsion has been developed from soybeans, palm fruits, and coconut with varying formulation ratios. Physicochemical characterization such as flash point, fire point, pour point, pH, density, and viscosity of the developed GMWF were analyzed. Also, a performance evaluation of the said GMWF was carried out and the investigation has shown that the physicochemical properties of the developed GMWF matched, as a potential substitute for conventional mineral-based MWF. Additionally, a performance evaluation conducted during a mechanical machining operation revealed that the GMWF showed an improved surface roughness of about 10.77% compared to conventional mineral MWF. Observations during the machining operation further revealed that the formulated GMWF demonstrated some level of environmental tolerance as it was not associated with misting or the discharge of fumes. The research outcome will impact green machining science and MWF technology for sustainable mechanical machining and cutting fluid development.

Article Details

How to Cite
[1]
V. A. Balogun, V. D. Obasa, O. B. Ohikhuare, J. O. Akhimien, and W. O. Ikalumhe, “Formulation Ratio Effectiveness of Green Metal Working Fluid (GMWF) as a Bio Alternative for Green Manufacturing”, AJERD, vol. 7, no. 2, pp. 277-289, Sep. 2024.
Section
Articles

References

[1]. Woma, T.Y.; Lawal S., Abdulrahman, A.S., Olutoye, M. & M. Ojapah. (2019). Vegetable Oil Based Lubricants: Challenges and Prospects. Tribology Online. 14. 60-70. 10.2474/trol.14.60.
[2]. Astakhov, V., Outeiro, M. & Jose, C. (2019). Importance of Temperature in Metal Cutting and Its Proper Measurement/Modeling. 10.1007/978-3-030-03822-9_1.
[3]. Sankaranarayanan, R[1]. Woma, T.Y., Lawal S., Abdulrahman, A.S., Olutoye, M., & Ojapah, M. (2019). Vegetable Oil Based Lubricants: Challenges and Prospects. Tribology Online, 14(2), 60-70. http://doi.10.2474/trol.14.60.
[2]. Astakhov, V., Outeiro, M. & Jose, C. (2018). Importance of Temperature in Metal Cutting and Its Proper Measurement/Modeling. In J. Davim (Eds), Measurement in Machining and Tribology. Materials Forming, Machining and Tribology. Springer, 1-47. Cham. https://doi.org/10.1007/978-3-030-03822-9_1
[3]. Sankaranarayanan, R. & Krolczyk, G.M. (2021). A comprehensive review of research developments of vegetable-oil-based cutting fluids for sustainable machining challenges. Journal of Manufacturing Processes, 67, 286–313.
[4]. Deshpande, V. & Jyothi. P., (2022). A Review on Sustainable Eco-friendly Cutting Fluids. Journal of Sustainability and Environmental Management, 1, 306-320. http://doi.10.3126/josem.v1i2.45383.
[5]. Uppar, R., Dinesha, P., & Kumar. S. A. (2023). A critical review on vegetable oil-based bio-lubricants: preparation, characterization, and challenges. Environment Development Sustainability, 25, (45), 1-36 https://doi.org/10.1007/s10668-022-02669-w.
[6]. Ahmed A.N., Syahrullail, S.W., Azlee, N. I., Che Sidik, N. A., Yahya, W. J., & Abd, R. E. (2019). Biolubricant production from palm stearin through enzymatic transesterification method. Biochemical Engineering Journal, 148, 178–184. http://doi.10.1016/j.bej.2019.05.009.
[7]. Srikant, R. R., & Rao, P. N. (2017). Use of vegetable-based cutting fluids for sustainable machining. Sustainable Machining Springer, Berlin, 31–46. http://doi. 10.1007/978-3-319-51961-6_2.
[8]. Mbimda, A. M, Muhammad, M. H., & Aje T. (2018). Vegetable Oils as Metal Cutting Fluids in Machining Operations: A Review. Journal of Scientific and Engineering Research, 5(6), 108-116
[9]. Hassan, T., Kandeel, E.M., Taher, M.S., Badr, E.E., & El-Tabei. A.S. (2023). Sustainable utilization of the vegetable oil manufacturing waste product in the formulation of eco-friendly emulsifiable cutting fluids. Scientific Reports, 13(1) http://doi.10.1038/s41598-023-46768-8.
[10]. Abutu, J., Oluleye, M., Okechukwu, C., Salawu, S., & Unamba, U. (2022). Performance Assessment of Vegetable Oil-Based Cutting Fluid Developed from Palm Kernel Oil using Multi-Response Optimisation Technique. Nigerian Journal of Technology, 41(1), 99-113. http://doi.10.4314/njt.v41i1.14
[11]. Dharmathilaka, I.P. & Herath, M. (2023). Sustainable cutting fluids for composite machining -A short review. 7th International Research Conference of Uva Wellassa University (IRCUWU 2023-163).
[12]. Kazeem, R. J., Tien-Chien, G. Akande, Akinlabi S., & Akinlabi, E. (2024). Performance evaluation of hybrid biodegradable oils as a lubricant during cylindrical turning of AISI 304 austenitic stainless steel. AIMS Materials Science. 11(2), 256-294. 10.3934/matersci.2024015.
[13]. Talib, N., & Rahim, E.A. (2016). The Effect of Tribology Behavior on Machining Performances When Using Bio-based Lubricant as a Sustainable Metalworking Fluid, Procedia CIRP, 40(8), 504-508, https://doi.org/10.1016/j.procir.2016.01.116.
[14]. Gan, C. K., Liew, P. J., Kin, L., & Jiwang. Y. (2024). Biodegradable cutting fluids for sustainable manufacturing: a review of machining mechanisms and performance. The International Journal of Advanced Manufacturing Technology,131 (9–10), 1-21, http://doi.10.1007/s00170-024-13132-7.
[15]. Saikiran, M., & Kumar, P. (2019). An investigation on the effects of vegetable oil based cutting fluids in the machining of copper alloys. Materials Today Proceedings, 19(6), 455–461. http://doi.10.1016/j.matpr.2019.07.635.
[16]. Onyebuchi, C., Owuama, C., Obiora O., & Org. W. (2021). Performance evaluation of castor oil and neem oil as cutting fluids applied in drilling operation of mild steel. World Journal of Engineering Research and Technology, 5(924), 90-111.
[17]. Elmunafi, M., Kurniawan, D., Mohd. Y. N. (2015). Use of Castor Oil as Cutting Fluid in Machining of Hardened Stainless Steel with Minimum Quantity of Lubricant. Procedia CIRP. 26(1), 408-411. http://doi.10.1016/j.procir.2015.03.001
[18]. Mehraj, S., Pandey, G., Garg, M. Santra, B., Grewal, H., Kanjilal, A., & Sistla, Y. (2023). Castor Oil and Cocoa Butter to Improve the Moisture Barrier and Tensile Properties of Pectin Films. Journal Polymer Environ 31(3), 312–326, https://doi.org/10.1007/s10924-022-02581-4.
[19]. Zhang, J., & Posinasetti, N. (2013). Green/Sustainable Manufacturing — Evaluation of a Soybean-Based Metal Cutting Fluid in Turning Operation. Applied Mechanics and Materials, 392, 925 - 930. http://doi.10.4028/www.scientific.net/AMM.392.925.
[20]. Xiaobin, C., Pengcheng, C., Jingxia, G., & Pingmei M. (2021). Use and performance of soybean oil-based bio-lubricant in reducing specific cutting energy during biomimetic machining, Journal of Manufacturing Processes. 62(4), (2021), 577-590, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2020.12.046.
[21]. Wu, X., Zhang X. Yang, S. Chen, H., & Wang D. (2000). Study of epoxidized rapeseed oil used as a potential biodegradable lubricant. JAOCS, Journal of the American Oil Chemists' Society, 77(5), 561-563. http://doi.10.1007/s11746-000-0089-2.
[22]. Yeswanth K.B., Raghu, R.B. Ashok, C.H. Bharath, K.D. & P. K. Lakshmi (2022). Waste cooking oil as a bio-cutting fluid in turning operation. International Journal of Progressive Research in Science and Engineering, 3(6), 192–195.
[23]. Ateequr R., Lokesh, V.S.K. Ramesh C.H., Mohan, K.G., & Vijay, R.S. (2022). A Low-Cost Bio-Coolants Production and Characterization. International Journal of Progressive Research in Science and Engineering, 3(6), 196–199.
[24]. Vaibhav, S., Anuj, K.S., Ranjeet, K.S., & Jitendra, K.K. (2022). State of the art on sustainable manufacturing using mono/hybrid nano-cutting fluids with minimum quality lubrication Materials and Manufacturing. Processes, 37(6), 603-639. https//dio: 10.1080/10426914.2022.2032147.
[25]. Gugulothu, S., & Vamsi K. P. (2020). Testing and performance evaluation of vegetable-oil–based hybrid nano cutting fluids. Journal of Testing and Evaluation, 48 (5), 3839-3854. http://dio.10.1520/JTE20180106.
[26]. Tuan, N.M., Duc, T.M., Long, T.T. Hoang, V.L., & Ngoc, T.B. (2022). Investigation of Machining Performance of MQL and MQCL Hard Turning Using Nano Cutting Fluids. Fluids, 7(5), 143. doi.org/10.3390/fluids7050143.
[27]. Srivyas, P., & Charoo, M S. (2019). Effect of Lubricants Additive: Use and Benefit. Materials Today: Proceedings. 18. 4773-4781. 10.1016/j.matpr.2019.07.465.
[28]. Salih, N., Salimon, J., & Yousif, E. (2012). Synthetic bio-lubricant base stocks based on environmentally friendly raw materials. Journal of King Saud University Science, 24(3), 221–226.
[29]. Sravanam S., Dipankar, S., & Wins, K.L. D. (2017). Formulation of soya oil-based cutting fluid and parametric optimization during hard turning of ohns steel with minimal cutting fluid application. International journal of advanced technology in engineering science,5 (3). https://www.ijates.com/images/short_pdf/1490856631_S3147.pdf
[30]. Ekundayo, G. (2016). Experimental Integration of Soybean Oil for Machining Operation. The Journal of Engineering Innovations and Sustainable Technology (JEIST), 1(1), 2488-9369. http://doi. 311777655.
[31]. Segun M., Adedayo1, I. Bright, K., Omoshola, I., & Omoniyi1, P.O. (2022). Performance evaluation of coconut oil based cutting fluid with biodegradable additives on cylindrical turning of AISI 1040 carbon steel. Acta Metallurgica Slovaca, 28(1), 10-13. https://doi.org/10.36547/ams.28.1.1256 10
[32]. Rengiah, R. G. (2022). Effect of Coconut Oil-Based Cutting Fluid on Cutting Performance During Turning With Minimal Fluid Application. International Journal of Manufacturing, Materials, and Mechanical Engineering, 12(1), 1-14. http://doi.org/10.4018/IJMMME.301611.
[33]. Sukirno & Ningsih, Y. R. (2017). Utilization of sulphurized palm oil as cutting fluid base oil for broaching process, IOP Conf. Ser.: Earth Environ. Sci. 60 012008DOI 10.1088/1755-1315/60/1/01200.
[34]. Ishfaq, K. Anjum, I., Pruncu, C.I., Amjad, M., Kumar, S., & Maqsood, M.A. (2021). Progressing towards Sustainable Machining of Steels: A Detailed Review. Materials (Basel). 14(18):5162. doi: 10.3390/ma14185162. PMID: 34576383; PMCID: PMC8464692.
[35]. Bagherzadeh, A., Kuram, E., & Budak, E. (2021). Experimental evaluation of eco-friendly hybrid cooling methods in slot milling of titanium alloy. Journal of Cleaner Production, 289,(12) 5817.
[36]. Babu, N.M., Anandan, V., Muthukrishnan, N. Arivalagar, A.A., & Bab U. M.D. (2019). Evaluation of graphene-based nano fluids with minimum quantity lubrication in turning of AISI D3 steel. SN Applied Sciences, 1(1202). 1-15.
[37]. Abishek, R., S. Charan, V., Patil, V., & Manjunath, G.K. (2021). Study of adverse effects of cutting fluids in metal cutting and analysis. Journal of Emerging Technologies and Innovative Research, 8(8), 114-118. https://www.jetir.org/view?paper=JETIRFA06020
[38]. Mello, V.F., Batista, L.N., De Robertis, E., Castro, C., Cunha V.S. & Costa, M.A.S. (2015). Thermal and rheological behavior of ecofriendly metal cutting fluids. Journal of Thermal Analysis and Calorimetry, 123(2), 1-8. doi: 10.1007/s10973-015-4848-x.
[39]. Dahbi, S., El Moussami, H., & Ezzine, L. (2015). Optimization of turning parameters for surface roughness. Xème Conférence Internationale: Conception et Production Intégrées, Tanger, Morocco. hal-01260818.
[40]. Pang, S., Zhao, W., Qiu, T., Liu, W., Yan, P., Jiao, L. & Wang. X. (2023). Effect of Cutting Fluid on Milled Surface Quality and Tool Life of Aluminum Alloy. Materials (Basel),16(6), 2198. doi: 10.3390/ma16062198..
[41]. Abdulkareem,S., Babatunde, M. A., Ogedengbe, T.S., & Adegun I. K. (2020). Effect of Some Thermodynamic Properties of Cutting Fluids on Machinability of Carbon Steel. FUOYE Journal of Engineering and Technology 5(2):2579-0617. https//dio: 10.46792/fuoyejet.v5i2.494
[42]. Rahim, E. A., Sani, A. S. A; & Talib, N. (2018). Tribological Interaction of Bio-Based Metalworking Fluids in Machining Process. InTech. doi: 10.5772/intechopen.72511.
[43]. Moganapriya, C., Rajasekar, R., Ponappa, K., Karthick R., & Venkatesh, R. (2017). Influence of Cutting Fluid Flow Rate and Cutting Parameters on the Surface Roughness and Flank Wear of TiAlN Coated Tool in Turning AISI 1015 Steel Using Taguchi Method. Arch. Metall. Mater. 62(3), 1827-1832.
[44]. Zhang, X., Li, C., Zhou, Z., Liu, B., Zhang, Y., Yang M., & Ali, H. M. (2023). Vegetable oil-based nano lubricants in machining: from physicochemical properties to application. Chinese Journal of Mechanical Engineering, 36(1), 76. http://doi.10.1186/s10033-023-00895-5.
[45]. Alaba, E.S., Kazeem, R.A., Adebayo, A.S., Petinrin, M.O., Ikumapayi, O.M., Jen. T.C., & Akinlabi. (2023). Evaluation of palm kernel oil as cutting lubricant in turning AISI 1039 steel using Taguchi-grey relational analysis optimization technique. Materials Research Express, 10(12). http://doi. 10.1088/2053-1591/ad11fe
[46]. Agrawal, S.M. & Patil, N.G. (2018). Experimental study of non-edible vegetable oil as cutting fluid in machining of M2S steel using MQL. Procedia Manufacturing 20, 207–212. http://doi.org/10.1016/j.promfg.2018.02.030
[47]. Balogun, V. A., Edem, I. F., Bonney, J., Ezeugwu, E. & Mativenga, P. T. (2015). Effect of cutting parameters on surface finish when turning nitronic 33 steel alloy. International Journal of Scientific & Engineering Research, 6(1), 1-9.
[48]. Edem, I. F., & Balogun, V. A. (2018). Sustainability analyses of cutting-edge radius on specific cutting energy and surface finish in side milling processes. The International Journal of Advanced Manufacturing Technology, 95, 3381-3391.
[49]. Naveed, M., Arslan, H. M. A., Javed, T. Manzoor, M.M., Quazi, T.Z., Imran, M., Zulfattah, M.K., & Fattah, I. M. R. (2021). State-of-the-Art and Future Perspectives of Environmentally Friendly Machining Using Biodegradable Cutting Fluids. Energies 14, (16), 4816. https://doi.org/10.3390/en14164816.
. & Krolczyk, G.M. (2021). A comprehensive review on research developments of vegetable-oil-based cutting fluids for sustainable machining challenges. J. Manuf. Processes, 67, 286–313.
[4]. Deshpande, V. & Jyothi. P. (2022). A Review on Sustainable Eco-friendly Cutting Fluids. Journal of Sustainability and Environmental Management. 1. 306-320. 10.3126/josem.v1i2.45383.
[5]. Uppar, R., Dinesha, P. & Kumar. S. A. (2023). Critical review on vegetable oil-based bio-lubricants: preparation, characterization, and challenges. Environ Dev Sustain 25, 9011–9046 https://doi.org/10.1007/s10668-022-02669-w.
[6]. Afifah, A. N., Syahrullail, S.W., Azlee, N. I., Che Sidik, N. A., Yahya, W. J. & Abd, R. E. (2019). Biolubricant production from palm stearin through enzymatic transesterification method. Biochemical Engineering Journal, 148, 178–184.
[7]. Srikant, R. R. & Rao, P. N. (2017). Use of vegetable-based cutting fluids for sustainable machining. Sustainable Machining Springer, Berlin, 31–46.
[8]. Mbimda, A. M, Muhammad, M. H. & Aje T. (2018). Vegetable Oils as Metal Cutting Fluids in Machining Operations: A Review. Journal of Scientific and Engineering Research, 5(6):108-116
[9]. Hassan, T., Kandeel, E.M., Taher, M.S., Badr, E.E. & El-Tabei. A.S. (2013). Sustainable utilization of the vegetable oil manufacturing waste product in the formulation of eco-friendly emulsifiable cutting fluids. Sci Rep 13, 21406 (2023). https://doi.org/10.1038/s41598-023-46768-
[10]. Abutu, J., Oluleye, M., Okechukwu, C., Salawu, S. & Unamba, U. (2022). Performance Assessment of Vegetable Oil-Based Cutting Fluid Developed from Palm Kernel Oil using Multi-Response Optimisation Technique. Nigerian Journal of Technology, 41. 99-113. 10.4314/njt.v41i1.14
[11]. Dharmathilaka, I. & Herath, M. (2023). Sustainable cutting fluids for composite machining -A short review. 7th International Research Conference of Uva Wellassa University (IRCUWU 2023).
[12]. Kazeem, R. J., Tien-Chien, G. Akande, Akinlabi S. & Akinlabi, E. (2024). Performance evaluation of hybrid biodegradable oils as a lubricant during cylindrical turning of AISI 304 austenitic stainless steel. AIMS Materials Science. 11. 256-294. 10.3934/matersci.2024015.
[13]. Talib, N. & Rahim, E.A. (2016). The Effect of Tribology Behavior on Machining Performances When Using Bio-based Lubricant as a Sustainable Metalworking Fluid, Procedia CIRP, Volume 40, 504-508, ISSN 2212-8271, https://doi.org/10.1016/j.procir.2016.01.116.
[14]. Gan, C. K., Liew, P. J., Kin, L. & Jiwang. Y. (2024). Biodegradable cutting fluids for sustainable manufacturing: a review of machining mechanisms and performance. The International Journal of Advanced Manufacturing Technology. 131. 1-21. 10.1007/s00170-024-13132-7.
[15]. Saikiran M. & Kumar, P. (2019). An investigation on the effects of vegetable oil based cutting fluids in the machining of copper alloys,” Materials Today Proceedings, vol. 19, pp. 455–461, 2019.
[16]. Onyebuchi, C., Owuama, C., Obiora O. & Org. W. (2021). Performance evaluation of castor oil and neem oil as cutting fluids applied in drilling operation of mild steel World Journal of Engineering Research and Technology WJERT SJIF Impact Factor: 5.924 *Corresponding Author. 90-111.
[17]. Kumar, N., Agarwal, A. K & Jain, P. K. (2021). Performance evaluation of castor oil-based cutting fluid during machining of stainless steel. Journal of Materials Research and Technology, 11, 974-983.
[18]. Mehraj, S., Pandey, G., Garg, M. Santra, B., Grewal, H., Kanjilal, A., & Sistla, Y. (2023). Castor Oil and Cocoa Butter to Improve the Moisture Barrier and Tensile Properties of Pectin Films. Journal Polymer Environ 31, 312–326, https://doi.org/10.1007/s10924-022-02581-4.
[19]. Zhang, J. & Posinasetti, N. (2013). Green/Sustainable Manufacturing — Evaluation of a Soybean-Based Metal Cutting Fluid in Turning Operation. Applied Mechanics and Materials. 392. 925 - 930. 10.4028/www.scientific.net/AMM.392.925.
[20]. Xiaobin, C., Pengcheng, C., Jingxia, G. & Pingmei M. (2021). Use and performance of soybean oil based bio-lubricant in reducing specific cutting energy during biomimetic machining,Journal of Manufacturing Processes. 62, (2021), 577-590, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2020.12.046.
[21]. Wu, X., Zhang X. Yang, S. Chen, H. & Wang D. (2000). Study of epoxidized rapeseed oil used as a potential biodegradable lubricant. JAOCS, Journal of the American Oil Chemists' Society. 77. 561-563. 10.1007/s11746-000-0089-2.
[22]. Yeswanth K.B., Raghu, R.B. Ashok, C.H. Bharath, K.D. & P. K. Lakshmi (2022). Waste cooking oil as a bio-cutting fluid in turning operation. International Journal of Progressive Research in Science and Engineering, 3(6), 192–195. Retrieved from https://journal.ijprse.com/index.php/ijprse/article/view/652.
[23]. Ateequr R., Lokesh, V.S.K. Ramesh C.H., Mohan, K.G. & Vijay, R.S. (2022). A Low-Cost Bio-Coolants Production and Characterization. International Journal of Progressive Research in Science and Engineering, 3(6), 196–199.
[24]. Vaibhav, S., Anuj, K.S., Ranjeet, K.S., & Jitendra, K.K. (2022). State of the art on sustainable manufacturing using mono/hybrid nano-cutting fluids with minimum quality lubrication Materials and Manufacturing Processes, 37:6, 603-639, DOI: 10.1080/10426914.2022.2032147.
[25]. Gugulothu, S & Vamsi K. P. (2020). Testing and performance evaluation of vegetable-oil–based hybrid nano cutting fluids. Journal of Testing and Evaluation 48 (5) 3839-3854.
[26]. Tuan, N.M., Duc, T.M., Long, T.T. Hoang, V.L & Ngoc, T.B. (2022). Investigation of Machining Performance of MQL and MQCL Hard Turning Using Nano Cutting Fluids. Fluids 2022, 7, 143. doi.org/10.3390/fluids7050143.
[27]. Uppar, R., Dinesha, P. & Kumar, S. (2023). A critical review on vegetable oil-based bio-lubricants: preparation, characterization, and challenges. Environ Dev Sustain 25, 9011–9046 (2023). https://doi.org/10.1007/s10668-022-02669-w
[28]. Salih, N., Salimon, J. & Yousif, E. (2012). Synthetic biolubricant basestocks based on environmentally friendly raw materials. Journal of King Saud University Science, 24(3), 221–226.
[29]. Sravanam S., Dipankar, S., & Wins, K.L. D. (2017). Formulation of soya oil based cutting fluid and parametric optimization during hard turning of ohns steel with minimal cutting fluid application. International journal of advanced technology in engineering science. (5) 3.
[30]. Ekundayo, G. (2016). Experimental Integration of Soybean Oil for Machining Operation. The Journal of Engineering Innovations and Sustainable Technology (JEIST). 1. 2488-9369.
[31]. Segun M., Adedayo1, I. Bright, K., Omoshola, I., & Omoniyi1, P.O. (2022). Performance evaluation of coconut oil based cutting fluid with biodegradable additives on cylindrical turning of AISI 1040 carbon steel. Acta Metallurgica Slovaca, 28 (1) 10-13. DOI: 10.36547/ams.28.1.1256 10
[32]. Rengiah, R. G. (2022). Effect of Coconut Oil-Based Cutting Fluid on Cutting Performance During Turning With Minimal Fluid Application. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 12(1), 1-14. http://doi.org/10.4018/IJMMME.301611.
[33]. Sukirno & Ningsih, Y. R. (2017). Utilization of sulphurized palm oil as cutting fluid base oil for broaching process, IOP Conf. Ser.: Earth Environ. Sci. 60 012008DOI 10.1088/1755-1315/60/1/01200.
[34]. Ishfaq, K. Anjum, I., Pruncu, C.I., Amjad, M., Kumar, S. & Maqsood, M.A. (2021). Progressing towards Sustainable Machining of Steels: A Detailed Review. Materials (Basel). 14(18):5162. doi: 10.3390/ma14185162. PMID: 34576383; PMCID: PMC8464692.
[35]. Bagherzadeh, A., Kuram, E. & Budak, E. (2021). Experimental evaluation of eco-friendly hybrid cooling methods in slot milling of titanium alloy. Journal of Cleaner Production, 289, 125817.
[36]. Babu, N.M., Anandan, V., Muthukrishnan, N. Arivalagar, A.A. & Bab u. M.D. (2019). Evaluation of graphene based nano fluids with minimum quantity lubrication in turning of AISI D3 steel. SN Applied Sciences, 1 (1202): 1-15.
[37]. Abishek, R., S. Charan, V., Patil, V. & Manjunath, G.K. (2021). Study of adverse effects of cutting fluids in metal cutting and analysis 2021 JETIR 8(8): 114-118.
[38]. Mello, V.F., Batista, L.N., De Robertis, E., Castro, C., Cunha V.S. & Costa, M.A.S. (2015). Thermal and rheological behavior of ecofriendly metal cutting fluids. J Therm Anal Calorim 123, 123(2):1-8, DOI: 10.1007/s10973-015-4848-x.
[39]. Dahbi, S., El Moussami, H., & Ezzine, L. (2015). Optimization of turning parameters for surface roughness. Xème Conférence Internationale: Conception et Production Intégrées, Tanger, Morocco. ⟨hal-01260818⟩.
[40]. Pang, S., Zhao, W., Qiu, T., Liu, W., Yan, P., Jiao, L. & Wang. X. (2023). Effect of Cutting Fluid on Milled Surface Quality and Tool Life of Aluminum Alloy. Materials (Basel). 2023 Mar 9;16(6):2198. doi: 10.3390/ma16062198. PMID: 36984078; PMCID: PMC10056421 (pH).
[41]. Abdulkareem,S., Babatunde, M. A., Ogedengbe, T.S. & Adegun I. K. (2020). Effect of Some Thermodynamic Properties of Cutting Fluids on Machinability of Carbon Steel. FUOYE Journal of Engineering and Technology 5(2):2579-0617. DOI: 10.46792/fuoyejet.v5i2.494

[42]. Rahim, E. A., Sani, A. S. A; & Talib, N. (2018). Tribological Interaction of Bio-Based Metalworking Fluids in Machining Process. InTech. doi: 10.5772/intechopen.72511.
[43]. Moganapriya, C., Rajasekar, R., Ponappa, K., Karthick R, & Venkatesh, R. (2017). Influence of Cutting Fluid Flow Rate and Cutting Parameters on the Surface Roughness and Flank Wear of TiAlN Coated Tool in Turning AISI 1015 Steel Using Taguchi Method. Arch. Metall. Mater. 62 (3): 1827-1832
[44]. Zhang, X., Li, C., Zhou, Z., Liu, B., Zhang, Y., Yang M. & Ali, H. M. (2023). Vegetable oil-based nano lubricants in machining: from physicochemical properties to application. Chinese Journal of Mechanical Engineering, 36(1): 76.
[45]. Alaba, E.S., Kazeem, R.A., Adebayo, A.S., Petinrin, M.O., Ikumapayi, O.M., Jen. T.C. & Akinlabi. (2023). Evaluation of palm kernel oil as cutting lubricant in turning AISI 1039 steel using Taguchi-grey relational analysis optimization technique doi.org/10.1016/j.aime.2023.100115.
[46]. Agrawal, S.M. & Patil, N.G. (2018). Experimental study of non-edible vegetable oil as cutting fluid in machining of M2S steel using MQL Procedia Manufacturing 20, 207–212 doi.org/10.1016/j.promfg.2018.02.030
[47]. Balogun, V. A., Edem, I. F., Bonney, J., Ezeugwu, E. & Mativenga, P. T. (2015). Effect of cutting parameters on surface finish when turning nitronic 33 steel alloy. International Journal of Scientific & Engineering Research, 6(1), 1-9.
[48]. Edem, I. F. & Balogun, V. A. (2018). Sustainability analyses of cutting-edge radius on specific cutting energy and surface finish in side milling processes. The International Journal of Advanced Manufacturing Technology, 95, 3381-3391.
[49]. Naveed, M., Arslan, H. M. A., Javed, T. Manzoor, M.M., Quazi, T.Z., Imran, M., Zulfattah, M.K. & Fattah, I. M. R. (2021). State-of-the-Art and Future Perspectives of Environmentally Friendly Machining Using Biodegradable Cutting Fluids. Energies 14, (16): 4816. https://doi.org/10.3390/en14164816.