Impact of Mixture Ratio on Bio-Composite Material from Bamboo and Recycled Polyethylene Terephthalate (PET)

Main Article Content

Abiodun Ayodeji Ojetoye
Olutosin Olufisayo Ilori
https://orcid.org/0000-0003-4732-2683
Shalom Chitom Iwedi
Kelechi Valentine Obiechefu
Precious Arinze Okezue
Kareem Feranmi

Abstract

The study investigated the impact of mixture ratio on various physico-chemical and mechanical properties of a bio-composite material made from bamboo and recycled polyethylene terephthalate (PET). The bamboo and recycled PET bottles were sourced from Adeleke University, Ede research farm and waste buckets in male hostels of the same university, respectively. The weight percentages (wt%) of bamboo and PET powder were adjusted as follow: 60 wt% bamboo and 40 wt% PET, 65 wt% bamboo and 35 wt% PET, 70 wt% bamboo and 30 wt% PET, 75 wt% bamboo and 25 wt% PET, and 80 wt% bamboo and 20 wt% PET, respectively. The findings indicate that as the mixture ratio of the constituents varied, the composite samples exhibited a decrease in density (from 915.45 – 819.24 kg/m3), flammability (from 25.84 – 19.93 s), hardness (from 88.55 – 55.57 BHN), compressive strength (from 14.78 – 9.10 N/mm3), and wear resistance (from 0.0096 – 0.0011 cm/cm3). In contrast, the composite exhibited an increase in oil and water absorption rates ranging from 0.0010% to 0.0810% and from 0.0112% to 0.12%, respectively, as the mixture ratio varied. Furthermore, the ratio of the mixture does not impact the acidity or alkalinity of the resulting composite material. Hence, the mixture ratio that yields optimal attributes result in excellent performance, tailored to the specific requirements of industries such as automotive and aeronautics. Finally, the diverse combination of bamboo and PET powders provides a practical approach to creating efficient, environmentally-friendly bio-composite materials suitable for various industrial applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. A. Ojetoye, O. O. Ilori, S. C. Iwedi, K. V. Obiechefu, P. A. Okezue, and K. Feranmi, “Impact of Mixture Ratio on Bio-Composite Material from Bamboo and Recycled Polyethylene Terephthalate (PET)”, AJERD, vol. 7, no. 2, pp. 511–520, Dec. 2024.
Section
Articles

References

Turri, E.M. & Leterme, S.C. (2023). How plastic debris and associated chemicals impact the marine food web: A review. Environmental pollution, 321(1), 1-12. doi:10.1016/j.envpol.2023.121156.

Honingh, D., Emmerik, T.V., Uijttewaal, W., Kardhana, H., Hoes, O. & Giesen, N. (2020). Urban river water level increase through plastic waste accumulation at a rack structure. Frontiers in earth science, 8(28), 1-8. doi: 10.3389/feart.2020.00028.

Cubas, A.L.V., Bianchet, R.T., Reis, I.M.A.S., Gouveia, I.C. (2022). Plastics and microplastic in the cosmetic industry: Aggregating sustainable actions aimed at alignment and interaction with UN sustainable development goals. Polymers, 14(21), 1-16. doi: 10.3390/polym14214576.

Benyathiar, P., Kuma, P., Carpenter, G., Brace, J. & Mishra, D. (2022). Polyethylene terephthalate (PET) bottle-to-bottle recycling for the beverage industry: A review. Polymers, 14(12), 1-29. doi: 10.3390/polym14122366.

Sarda, P., Hanan, J.C., Lawrence, J.G. & Allahkarami, M. (2021). Sustainability performance of polyethylene terephthalate, clarifying challenges and opportunities. Journal of polymer science, 60(1), 7-31. doi: 10.1002/pol.20210495.

Evode, N., Qamar, S.A., Bilal, M., Barcelo, D. & Iqbal, H.M.N. (2021). Plastic waste and its management strategies for environmental sustainability. Case studies in chemical and environmental engineering, 4(4), 1-8. doi: 10.1016/j.cscee.2021.100142.

Cao, F., Wang, L., Zheng, R., Guo, L., Chen, V. & Qian, X. (2022). Research and progress of chemical depolymerisation of waste PET and high-value application of its depolymerisation products. RSC Adv., 12(1), 31564-31576. doi: 10.1039/D2RA06499E.

Dauletbek. A., Xue, X., Shen, X., Li, H., Feng, Z., Lorenzo, R., Liu, K., Escamilla, E.Z., Yao, L. & Zheng, X. (2021). Lightweight bamboo-structures-report on 2021 international collaboration on bamboo construction. Sustainable structures, 3(1),1-14. doi: 10.54113/j.sust.2023.000025.

Wei, X., Wang, G., Smith, L.M., Chen, X. & Jiang, H. (2021). Effects of gradient distribution and aggregate structure of fibers on the flexibility and flexural toughness of moso bamboo (Phyllostachys edulis). Journal of materials research and technology, 16(1), 853-863. doi: 10.1016/j.jmrt.2021.12.071.

Khajouei-Nezhad, M., Semple, K., Nasir, V., Hu, Y., Marggraf, G., Hauptman, J., & Dai, C. (2023). Advances in engineered bamboo processing: Material conversion and structure. Advances in bamboo science, 5(1), 1-15. doi: 10.1016/j.bamboo.2023.100045.

Pramudi, G., Raharjo, W.W., Ariawan, D. & Arifin, Z. (2021). Utilization of bamboo fiber in the development of environmentally friendly composite - A review. IOP conference series: Materials science and engineering, 1096(1), 1-14. doi: 10.1088/1757-899X/1096/1/012038.

Siswanto, J., Latifah, K., Supriyadi, B., Rochim, A. & Alzami, F. (2020). The relation of compressive strength and tensile strength of bamboo fiber for soil stabilization. Journal of physics conference series, 1517(1), 1-6. doi: 10.1088/1742-6596/1517/1/012075.

Hassan, K.M.F., Al Hassan, K.M.N., Ahmed, T., Gyorgy, S., Pervez, M.N., Bejo, L., Sandor, B. & Alpar, T. (2023). Sustainable bamboo fiber reinforced polymeric composites for structural applications: A mini review of recent advances and future prospects. Environmental engineering, 8(1), 1-16. doi: 10.1016/j.cscee.2023.100362.

Sanjita, W., Surbhi, K., Pritesh, Y., Halil, T., Soydan, O. & Uday, V. (2022). Bamboo fiber reinforced polypropylene composites for transportation applications. Frontiers in materials, 9(1), 1-14. doi: 10.3389/fmats.2022.967512.

Ojetoye, A.A., Abu, R. & Adewole, N.A. (2023). Assessment of automobile user’s perception of viability of producing spare parts from biomaterial composites in Nigeria. Conference proceedings, 1st faculty of engineering and technology conference (FETiCON). Jun. 5-7, 724-728.

Bharat, N., & Bose, P.S.C. (2021). An overview on the effect of reinforcement and wear behavior of metal matrix composites. Materials today: Proceedings, 46, 1-7. doi: 10.1016/j.matpr.2020.12.084.

Ilori, O.O., Soji-Adekunle, A.R., Adedokun, O.P., Umama, T.O., Olagunju, C.B. & Olasunkanmi, A.U. (2021). Production of automobile brake pads from bagasse, banana peels and periwinkle shell. Adeleke university journal of engineering and technology, 4 (2), 1-6.

Ilori, O.O., Ojetoye, A.A., Adedokun, O.P., Umama, T.O., Olagunju, C.B. & Olasunkanmi, A.U. (2022). Effect of mechanical and physical properties on brake pads produced from bagasse, banana peels and periwinkle shell. LAUTECH journal of engineering and technology, 16 (1), 100-105.

Djonga, P.N.D., Tom, A., Valery, H.G. & Nkeng, G.E. (2022). Mechanical properties and chemical stability of bathroom wall composites manufactured from recycled polyethylene terephthalate (PET) mixed with cocoa hull powder. Journal of advanced chemical science, 7(4), 751-754. doi: 10.5772/intechopen.102457.

Atunaya, C.U., Olaitan, S.A., Azeez, T.O., Akagu, C.C., Onukwuli, O.D., & Mentikit, M.C. (2013). Effects of rice husk filler on mechanical properties of polyethylene matrix composites. International journal of current research review, 5(15), 58-65.

Ilori, O.O., Idowu, I.A. & Adeleke, K.M. (2018). Comparing the effect of fillers on the mechanical properties of recycled low density polyethylene composites under non-weathered and weathered conditions. European journal of engineering research and science, 3 (5), 17-20.

Idowu, I.A. & Ilori, O.O. (2020). Effect of fillers on mechanical properties of recycled low density polyethylene composites under weathered condition. Nigeria journal of technological research, 15 (3), 44-49.

Awolusi, T., Taiwo, A., Aladegboye, O., Oguntayo, D. & Akinkurolere, O. (2022). Optimisation of quinary blended supplementary cementitious material for eco-friendly paving unit using taguchi orthogonal array design. Materials Today: Proceedings, 65(3), 2221-2227, doi: 10.1016/j.matpr.2022.06.263.

Oyewo, A.T., Adefajo, A.A., Adeleke, K.M., Oyerinde, A.Y. & Ojetoye, A.A. (2024). Taguchi optimization prediction to evaluate the synergetic impact of coconut shell ash particles on the tensile strength of banana pseudo stem fiber composites. Journal of Engineering and Technology, xx(x), 1-11.

Benjamin, M.A.Z, Ng, S.Y, Saikim, F.H. & Rusdi, N.A. (2022). The effects of drying techniques on phytochemical contents and biological activities on selected bamboo leaves. Molecules, 27(19), 1-23.

Jabłońska, B., Kiełbasa, P., Korenko, M. & Dróżdż, T. (2019). Physical and chemical properties of waste from pet bottles washing as a component of solid fuels. Energies, 12(1),1-17. doi: 10.3390/en12112197.

Nyantakyi, E., Obiri-Yeboah, A., Ghadafi, A., Domfeh, M. & Obeng-Ahenkora, N. (2020). Partial replacement of cement with glass bottle waste powder in concrete for sustainable waste management: A case study of Kumasi metropolitan assembly, Ashanti region, Ghana. Journal of civil engineering research. 10(1), 29-38. doi: 10.5923/j.jce.20201002.01.

Tao, Y., Hadigheh, S.A. & Wei, Y. (2023). Recycling of glass fibre reinforced polymer (GFRP) composite wastes in concrete: A critical review and cost benefit analysis. Structures, 53(1), 1540-1556.

Enache, A.C., Grecu, I., & Samoila, P. (2024). Polyethylene terephthalate (PET) recycled by catalytic glycolysis: A bridge toward circular economy principles. Materials, 17(12), 1-33. doi: 10.3390/ma17122991 Akhator, E., Bazuaye, L., Ewere, A. & Oshiokhai, O. (2023). Production and characterisation of solid waste-derived ffuel briquettes from mixed wood wastes and waste pet bottles. Heliyon 9(1), 1-11.

Akhator, P.E., Bazuaye, L., Ewere, A., & Oshiokhai, O. (2023). Production and characterisation of solid waste-derived fuel briquettes from mixed wood wastes and waste pet bottles. Heliyon, 9(11), 1-11. doi: 10.1016/j.heliyon.2023.e21432.

Zawawi, E.Z.E, Amirrudin, M., Kamarun, D., Bonnia, N.N. & Rozana, M.D. (2019). Characterizations of poly-lactic acid/polypropylene filled with bamboo charcoal powder. Journal of physics: Conference series, 1349:1-8.

Mariyam, S., Parthasarathy, P., Pradhan, S., AlAnsari, T. & McKay, G. (2024) Co-pyrolysis of biomass and binary single-use plastics: synergy, kinetics, and thermodynamics. International journal of sustainable energy, 43(1), 1-23. doi: 10.1080/14786451.2023.2168003.

Lim, J., Kim, S.Y., Yeo, D., Shin, H., Jeong, D. (2018). Effects of ZrO2 addition on mechanical strength and thermal shock resistance of cordierite-mullite ceramics. Korean journal of materials research. 28(1), 719-724.

Musa, D.E., Mariette, O.L., Osilama, A.J. & Sotonye, W.A. (2023). Preparation of acid-base indicators using extract from petals of pride of barbados (caesalpinia pulcherrima) flowers. Nigerian research journal of chemical sciences, 11(1), 127-137.

Celebrezze, J.V., Boving, I. & Moritz, M.A. (2023). Tissue-level flammability testing: a review of existing methods and a comparison of a novel hot plate design to an epiradiator design. Fire, 6(4), 1-22. doi: 10.3390/fire6040149.

Adeleke, K.M., Fadara, T.G., Ojetoye, A.A., Oyerinde, A.Y. & Soji-Adekunle, A.R. (2024). Mechanical properties of boron-doped-zinc oxide thin films using spray pyrolysis technique. Journal of engineering sciences and design, 12(2), 265-276. doi: 10.21923/jesd.1304303.

Harish, M., Whitaker, F., Daniel, G., Mohan, R. & Mini, K M. (2021). Performance assessment of recycled LDPE with sand fillers. Materials Today: Proceedings. 42. doi: 10.1016/j.matpr.2021.02.285.

Adegbola. J.O., Alli, O.D., Akingbade, T.O., Ojetoye, A.A., Sanni, J. & Ajala, O.M. (2024). Development of a graphene-carbon composite: an alternative to metals and plastics used in the production of pyramidal satellite horn antenna. Nigerian research journal of engineering and environmental sciences 9(1), 298-303.

Ilori, O., Idowu, I. & Adeleke, Kehinde. (2018). Comparing the effect of fillers on the mechanical properties of recycled low density polyethylene composites under non-weathered and weathered conditions. European journal of engineering research and science, 3(5), 17-20. doi: 10.24018/ejers.2018.3.5.707.

Azeez, T.M., Mudashiru, L.O. & Ojetoye, A.A. (2022). Assessment of Microstructure and Mechanical Properties of As-cast Magnesium Alloys Reinforced with Organically Extracted Zinc and Calcium. Advances in ManufacturingTechnologies and Production Engineering, 1, 45-55. doi: 10.2174/9789815039771122010009.

Abdullah, A.H.D., Karlina, N., Rahmatiya, W., Mudaim, S. & Fajrin, A.R. (2017). Physical and mechanical properties of five indonesian bamboos. IOP Conf. Ser. Earth Environ. Sci. 60, 1-6.

Christine, A.T., Panti, 1,, Christy, S.C., Althea, R.N., Kerby, D.R., Lessandro, E.O., Garciano, 1, & Luis, F.L. (2024). Establishing the characteristic compressive strength parallel to fiber of four local philippine bamboo species. Sustainability, 16(9), 1-21. doi: 10.3390/su16093845.

Adedipe, O., Abdullahi, A., Ogunwole, O. & Sadiq, I. (2013). Investigation of some mechanical properties of 'Agaraba' - A native nigerian bamboo. AU journal of technology. 16(1), 181-186.

Awalluddin, D., Ariffin, M.A., Osman, M., Hussin, M., Ismail, M., Lee, H., & Abdul, S.L.& Nor, H. (2017). Mechanical properties of different bamboo species. MATEC Web of Conferences. 138, 1-9. doi: 10.1051/matecconf/201713801024.

Djamil, S., Suardana, N.P.G., Irawan, A.P., Sugita, I.K.G., Lubis, S.Y. & Dicky T. (2020). Bamboo composite compressive strength with three-layer configuration. Conference series: Materials science Engineering, 1007(1), 1-6.

Odiakaose, C., Hassan, M. A., & Raji, A. (2023). Tensile strength and hardness of polypropylene-bamboo/kenaf hybrid composite after optimization of production process. Open journal of engineering science, 4(2), 14-34.

Banga, H., Singh, V., & Choudhary, S. (2015). Fabrication and study of mechanical properties of bamboo fibre rein-forced bio-composites. International institute of science technology & education, 6(1), 30-38.